Purpose: Castration-sensitive prostate cancer (CSPC) is a complex and heterogeneous condition encompassing a range of clinical presentations. As new approaches have expanded management options, clinicians are left with myriad questions and controversies regarding the optimal individualized management of CSPC.
Materials and methods: The US Prostate Cancer Conference (USPCC) multidisciplinary panel was assembled to address the challenges of prostate cancer management. The first annual USPCC meeting included experts in urology, medical oncology, radiation oncology, and nuclear medicine. USPCC co-chairs and session moderators identified key areas of controversy and uncertainty in prostate cancer management and organized the sessions with multidisciplinary presentations and discussion. Throughout the meeting, experts responded to questions prepared by chairs and moderators to identify areas of agreement and controversy.
Results: The USPCC panel discussion and question responses for CSPC-related topics are presented. Key advances in CSPC management endorsed by USPCC experts included the development and clinical utilization of gene expression classifiers and artificial intelligence (AI) models for risk stratification and treatment selection in specific patient populations, the use of advanced imaging modalities in patients with clinically localized unfavorable intermediate or high-risk disease and those with biochemical recurrence, recommendations of doublet or triplet therapy for metastatic CSPC (mCSPC), and consideration of prostate and/or metastasis-directed radiation therapy in select patients with mCSPC.
Conclusions: CSPC is a diverse disease with many therapeutic options and the potential for adverse outcomes associated with either undertreatment or overtreatment. Future studies are needed to validate and clinically integrate novel technologies, including genomics, AI, and advanced imaging, to optimize outcomes among patients with CSPC.
Keywords: biomarkers; ndrogen antagonists; precision medicine; prostatic neoplasms; radiotherapy.