Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines the rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving the mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec). Yet, controversies have arisen around the relative roles of stomatal density (d) and size (s), fractional stomatal opening (α; aperture relative to maximum), and gec in determining gleaf. Resolving the importance of these drivers is critical across the range of leaf surface conductances, from strong stomatal closure under drought (gleaf,min), to typical opening for photosynthesis (gleaf,op), to maximum achievable opening (gleaf,max). We derived equations and analyzed a compiled database of published and measured data for approximately 200 species and genotypes. On average, within and across species, higher gleaf,min was determined 10 times more strongly by α and gec than by d and negligibly by s; higher gleaf,op was determined approximately equally by α (47%) and by stomatal anatomy (45% by d and 8% by s), and negligibly by gec; and higher gleaf,max was determined entirely by d. These findings clarify how diversity in stomatal functioning arises from multiple structural and physiological causes with importance shifting with context. The rising importance of d relative to α, from gleaf,min to gleaf,op, enables even species with low gleaf,min, which can retain leaves through drought, to possess high d and thereby achieve rapid gas exchange in periods of high water availability.
© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].