The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCβ) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gβ1γ, PKCα, PKCε, CaMKII, GSK3β, β-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.
Keywords: G proteins; alcohol; caudate; cynomolgus macaques; putamen.
© 2024 International Society for Neurochemistry.