This work presents a comparison of physicochemical and in vitro active wound healing properties of two distinct Graphene Oxides (GOs) from graphite and coal. These GOs are incorporated in Bacterial Nanocellulose (BNC) to form hydrogels. The performance and limitations of the loading fraction of both GOs in BNC are controlled by the processing technology and the source materials from which GOs are derived. Edge functionalization with C-GO offers the advantage of facilitating face-to-edge assembly in the hydrogel leading to better dispersion than the face-to-face assembly of basal functionalized G-GO. The latter leads to more aggregation of G-GO, resulting in a lower optimal loading fraction. Our investigation into the antibacterial properties of the BNC and BNC/GO hydrogels against gram-negative E. coli revealed inhibitory effects of the BNC/GO hydrogels that intensified with an increase in the concentration of GO. Furthermore, an in vitro wound scratch assay demonstrated that BNC/C-GO hydrogels promote better cell migration, confirming their superior biocompatibility and suitability as active wound dressings, albeit limited by loading fraction due to agglomeration. These findings shed light on the performance and limitations of GOs for diverse applications, emphasizing the significance of exploring the influence of different methods and source materials of GOs.
Keywords: Active wound dressing; Bacterial Nanocellulose; Coal-derived graphene oxide; Face-to-edge assembly; Hydrogel.
Copyright © 2024 Elsevier B.V. All rights reserved.