Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery

Nutrients. 2024 May 20;16(10):1537. doi: 10.3390/nu16101537.

Abstract

Background: This study aims to identify unique metabolomics biomarkers associated with Type 2 Diabetes (T2D) and develop an accurate diagnostics model using tree-based machine learning (ML) algorithms integrated with bioinformatics techniques.

Methods: Univariate and multivariate analyses such as fold change, a receiver operating characteristic curve (ROC), and Partial Least-Squares Discriminant Analysis (PLS-DA) were used to identify biomarker metabolites that showed significant concentration in T2D patients. Three tree-based algorithms [eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Adaptive Boosting (AdaBoost)] that demonstrated robustness in high-dimensional data analysis were used to create a diagnostic model for T2D.

Results: As a result of the biomarker discovery process validated with three different approaches, Pyruvate, D-Rhamnose, AMP, pipecolate, Tetradecenoic acid, Tetradecanoic acid, Dodecanediothioic acid, Prostaglandin E3/D3 (isobars), ADP and Hexadecenoic acid were determined as potential biomarkers for T2D. Our results showed that the XGBoost model [accuracy = 0.831, F1-score = 0.845, sensitivity = 0.882, specificity = 0.774, positive predictive value (PPV) = 0.811, negative-PV (NPV) = 0.857 and Area under the ROC curve (AUC) = 0.887] had the slight highest performance measures.

Conclusions: ML integrated with bioinformatics techniques offers accurate and positive T2D candidate biomarker discovery. The XGBoost model can successfully distinguish T2D based on metabolites.

Keywords: bioinformatics; biomarker discovery; machine learning; metabolomics; type 2 diabetes.

MeSH terms

  • Adult
  • Aged
  • Algorithms
  • Biomarkers* / blood
  • Computational Biology* / methods
  • Diabetes Mellitus, Type 2* / metabolism
  • Female
  • Humans
  • Machine Learning*
  • Male
  • Metabolomics* / methods
  • Middle Aged
  • Pilot Projects
  • ROC Curve

Substances

  • Biomarkers