The synthesis and characterization of [Ce2(PPPA)4(OH)2]·4H2O, wherein PPPA denotes 3-(hydroxy(phenyl)phosphoryl)propanoate, were conducted. Its potential as a flame-retardant additive for poly(L-lactic acid) (PLA) in conjunction with ammonium polyphosphate (APP) was investigated. Remarkably, with just incorporation of the 1 % Ce-complex and 4 % APP, the resulting PLA composite (PLA-8) meets the V-0 standard, exhibiting an impressive limiting oxygen index (LOI) of 29.4 %. Moreover, the introduction of the Ce-complex leads to a significant extension of ignition time (TTI), a significant 24.1 % decrease in total heat release (THR) compared to pure PLA, and a notable increase in residual carbon rate from 0.3 % to 3.51 %. Although PLA-8 exhibits a minor decline of 8.7 % in tensile strength and 3.4 % in elongation at break, respectively, compared to pure PLA, there is a substantial improvement of 32.2 % in Young's modulus and 29.9 % in impact resistance. These results emphasise the potential of cerium-based phosphorus-containing flame retardants, with cerium playing a key role in enhancing the flammability characteristics of PLA. This study contributes to the development of sustainable and fire-resistant materials in polymer chemistry.
Keywords: Additive; Flame retardant; Polylactic acid; Rare-earth complexes; Sustainable material.
Copyright © 2024 Elsevier B.V. All rights reserved.