HYDRUS 2D was used to simulate chloropicrin (CP) emissions across a range of expected application and environmental conditions present within California, where CP is widely used in the pre-plant treatment of soils for high-value specialty crops. Simulations were developed based on field calibration work and physicochemical parameters from literature with additional consideration of application rate-dependent degradation and applicator practices including application depth, application mode, and tarp material. Model output was compared to the distribution of indirect whole-field flux estimates derived from field monitoring studies using measures of maximum 8-h, maximum 24-h, and cumulative emissions due to their relevance to public health. We observed a strong linear relationship (R2 ≥ 0.80, p < 0.001) between HYDRUS-simulated and field-based maximum flux estimates and no evidence of statistical difference depending on the estimation source for maximum 24-h flux. A linear relationship of similar strength (R2 = 0.82, p < 0.001) was observed between simulated and field-based cumulative emission estimates, although mean HYDRUS estimates were lower than field-estimated values for some high-emission application methods. Analysis of simulation output demonstrated large differences in CP emissions in response to application method and a non-linear increase in CP emissions with increasing application rate, with considerable interaction between application variables including application depth, tarp types, and field layout. The findings generally support the use of simulated CP emission estimates as a tool to address gaps in field-based flux estimates, particularly where characterization of short-term peak emissions is needed.
Keywords: Chloropicrin; Fumigant application; HYDRUS; Modeling; Soil fumigation; Volatilization.
Published by Elsevier B.V.