Wastewater-based epidemiology has proved to be a suitable approach for tracking the spread of epidemic agents including SARS-CoV-2 RNA. Different protocols have been developed for quantitative detection of SARS-CoV-2 RNA from wastewater samples, but little is known on their performance. In this study we compared three protocols based on Reverse Transcription Real Time-PCR (RT-PCR) and one based on Droplet Digital PCR (ddPCR) for SARS-CoV-2 RNA detection from 35 wastewater samples. Overall, SARS-CoV-2 RNA was detected by at least one method in 85.7 % of samples, while 51.4 %, 22.8 % and 8.6 % resulted positive with two, three or all four methods, respectively. Protocols based on commercial RT-PCR assays and on Droplet Digital PCR showed an overall higher sensitivity vs. an in-house assay. The use of more than one system, targeting different genes, could be helpful to increase detection sensitivity.
Keywords: Digital PCR; Droplet digital PCR; Environmental surveillance; Reverse transcription real-time PCR; SARS-CoV-2; Wastewater; Wastewater-based epidemiology.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.