Selenium nanoparticles (SeNPs) are an appealing carrier for the targeted delivery. The selenium nanoparticles are gaining global attention because of the potential therapeutic applications in several diseases e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, liver, and various autoimmune disorders like psoriasis, cancer, diabetes, and a variety of infectious diseases. Despite the fact still there is no recent literature that summarises the therapeutic applications of SeNPs. There are some challenges that need to be addressed like finding targets for SeNPs in various diseases, and the various functionalization techniques utilized to increase SeNP's stability while facilitating wide drug-loaded SeNP distribution to tumor areas and preventing off-target impacts need to focus on understanding more about the therapeutic aspects for better understanding the science behind it. Keeping that in mind we have focused on this gap and try to summarize all recent key targeted therapies for SeNPs in cancer treatment and the numerous functionalization strategies. We have also focused on recent advancements in SeNP functionalization methodologies and mechanisms for biomedical applications, particularly in anticancer, anti-inflammatory, and anti-infection therapeutics. Based on our observation we found that SeNPs could potentially be useful in suppressing viral epidemics, like the ongoing COVID-19 pandemic, in complement to their antibacterial and antiparasitic uses. SeNPs are significant nanoplatforms with numerous desirable properties for clinical translation.
Keywords: Clinical translation; Nanoparticles; Nutrient; Selenium; Therapeutic application.
© 2024. The Author(s).