Prediction of 30-Day Mortality Following Revision Total Hip and Knee Arthroplasty: Machine Learning Algorithms Outperform CARDE-B, 5-Item, and 6-Item Modified Frailty Index Risk Scores

J Arthroplasty. 2024 Nov;39(11):2824-2830. doi: 10.1016/j.arth.2024.05.056. Epub 2024 May 24.

Abstract

Background: Although risk calculators are used to prognosticate postoperative outcomes following revision total hip and knee arthroplasty (total joint arthroplasty [TJA]), machine learning (ML) based predictive tools have emerged as a promising alternative for improved risk stratification. This study aimed to compare the predictive ability of ML models for 30-day mortality following revision TJA to that of traditional risk-assessment indices such as the CARDE-B score (congestive heart failure, albumin (< 3.5 mg/dL), renal failure on dialysis, dependence for daily living, elderly (> 65 years of age), and body mass index (BMI) of < 25 kg/m2), 5-item modified frailty index (5MFI), and 6MFI.

Methods: Adult patients undergoing revision TJA between 2013 and 2020 were selected from the American College of Surgeons National Surgical Quality Improvement Program database and randomly split 80:20 to compose the training and validation cohorts. There were 3 ML models - extreme gradient boosting, random forest, and elastic-net penalized logistic regression (NEPLR) - that were developed and evaluated using discrimination, calibration metrics, and accuracy. The discrimination of CARDE-B, 5MFI, and 6MFI scores was assessed individually and compared to that of ML models.

Results: All models were equally accurate (Brier score = 0.005) and demonstrated outstanding discrimination with similar areas under the receiver operating characteristic curve (AUCs, extreme gradient boosting = 0.94, random forest = NEPLR = 0.93). The NEPLR was the best-calibrated model overall (slope = 0.54, intercept = -0.004). The CARDE-B had the highest discrimination among the scores (AUC = 0.89), followed by 6MFI (AUC = 0.80), and 5MFI (AUC = 0.68). Albumin < 3.5 mg/dL and BMI (< 30.15) were the most important predictors of 30-day mortality following revision TJA.

Conclusions: The ML models outperform traditional risk-assessment indices in predicting postoperative 30-day mortality after revision TJA. Our findings highlight the utility of ML for risk stratification in a clinical setting. The identification of hypoalbuminemia and BMI as prognostic markers may allow patient-specific perioperative optimization strategies to improve outcomes following revision TJA.

Keywords: CARDE-B; machine learning; modified frailty index; mortality; revision arthroplasty.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Algorithms
  • Arthroplasty, Replacement, Hip*
  • Arthroplasty, Replacement, Knee*
  • Female
  • Frailty* / mortality
  • Humans
  • Machine Learning*
  • Male
  • Middle Aged
  • Reoperation* / statistics & numerical data
  • Risk Assessment / methods
  • Risk Factors