Mechanical activation of VE-cadherin stimulates AMPK to increase endothelial cell metabolism and vasodilation

bioRxiv [Preprint]. 2024 May 13:2024.05.09.593171. doi: 10.1101/2024.05.09.593171.

Abstract

Endothelia cells respond to mechanical force by stimulating cellular signaling, but how these pathways are linked to elevations in cell metabolism and whether metabolism supports the mechanical response remains poorly understood. Here, we show that application of force to VE-cadherin stimulates liver kinase B1 (LKB1) to activate AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. VE-cadherin stimulated AMPK increases eNOS activity and localization to the plasma membrane as well as reinforcement of the actin cytoskeleton and cadherin adhesion complex, and glucose uptake. We present evidence for the increase in metabolism being necessary to fortify the adhesion complex, actin cytoskeleton, and cellular alignment. Together these data extend the paradigm for how mechanotransduction and metabolism are linked to include a connection to vasodilation, thereby providing new insight into how diseases involving contractile, metabolic, and vasodilatory disturbances arise.

Publication types

  • Preprint