Objectives: Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide. An important driving force for relapse is anxiety associated with opioid withdrawal. We hypothesized that our new technology, termed heterodyned whole-body vibration (HWBV) would ameliorate anxiety associated with OUD.
Methods: Using a randomized, placebo (sham)-controlled, double-blind study design in an NIH-sponsored Phase 1 trial, we evaluated 60 male and 26 female participants diagnosed with OUD and undergoing treatment at pain and rehabilitation clinics. We utilized the Hamilton Anxiety Scale (HAM-A) and a daily visual analog scale anxiety rating (1-10) to evaluate anxiety. Subjects were treated for 10 min 5X/week for 4 weeks with either sham vibration (no interferential beat or harmonics) or HWBV (beats and harmonics). The participants also completed a neuropsychological test battery at intake and discharge.
Results: In OUD subjects with moderate anxiety, there was a significant improvement in daily anxiety scores in the HWBV group compared to the sham treatment group (p=3.41 × 10-7). HAM-A scores in OUD participants at intake showed moderate levels of anxiety in OUD participants (HWBV group: 15.9 ± 1.6; Sham group: 17.8 ± 1.6) and progressively improved in both groups at discharge, but improvement was greater in the HWBV group (p=1.37 × 10-3). Furthermore, three indices of neuropsychological testing (mental rotations, spatial planning, and response inhibition) were significantly improved by HWBV treatment.
Conclusions: These findings support HWBV as a novel, non-invasive, non-pharmacological treatment for anxiety associated with OUD.
Keywords: Dopamine (DA); Hamilton Anxiety Scale A (HAM-A); Opioid Receptors (ORs); Opioid Use Disorder (OUD); Spinal Mechanoreceptor Activation from Vibration Motors Implanted Adjacent to the Laminae of the Cervical Vertebrae at C7-T1 (MStim); Substance Use Disorder (SUD); Whole-Body Vibration (WBV): Heterodyned WBV (HWBV).