Structure and Optical Properties of Sn-Based Halide Perovskites (C10H18N2)SnX4 (X = Cl, Br, I)

ACS Omega. 2024 May 8;9(20):22352-22359. doi: 10.1021/acsomega.4c01835. eCollection 2024 May 21.

Abstract

Low-dimensional tin-based halide perovskites are considered as eco-friendly substitutions of the iconic lead-based perovskites to host the potential as optoelectronic materials. However, a fundamental understanding of the structure-property relationship of these Sn(II)-based hybrids is still inadequate due to the limited members of this material family. To our knowledge, there is still lack of reports on a series of Sn(II)-based halide perovskites with the same organic cation but covering chloride, bromide, and iodide. In this work, three new halide perovskites TMPDASnX4 (X = Cl, Br, I) (TMPDA = N,N,N',N'-tetramethyl-1,4-phenylenediamine) are successfully synthesized, which provide the ideal paradigm to study the halogen-dependent evolution of the structure and properties of Sn(II)-based hybrid perovskites. Despite sharing the same monoclinic lattice (P21/m space group), it is demonstrated that TMPDASnCl4 adopts a one-dimensional structure composed of a five-coordinated pyramid configuration due to an extremely long Sn···Cl distance, while the typical two-dimensional motif is still maintained in TMPDASnBr4 and TMPDASnI4. The ambient stability is declined in the order from chloride to bromide and then to iodide. TMPDASnCl4 exhibits a broad-band bluish-white-light emission (centered at 515 nm, full width at half-maximum (fwhm) = 193 nm) with the Commission Internationale de l' Elairage (CIE) coordinates as (0.29, 0.34). Further, the correlated color temperature and color-rendering index were determined as 7617 K and 80.5, respectively. Based on the synthesis of new crystals, our work sheds light on the composition-structure-property relationship of hybrid Sn(II)-based halide perovskites.