RNA polymerase II (Pol II) has a C-terminal domain (CTD) that is unstructured, consisting of a large number of heptad repeats, and whose precise function remains unclear. Here, we investigate how altering the CTD's length and fusing it with protein tags affects transcriptional output on a genome-wide scale in mammalian cells at single-cell resolution. While transcription generally appears to occur in burst-like fashion, where RNA is predominantly made during short bursts of activity that are interspersed with periods of transcriptional silence, the CTD's role in shaping these dynamics seems gene-dependent; global patterns of bursting appear mostly robust to CTD alterations. Introducing protein tags with defined structures to the N terminus cause transcriptome-wide effects, however. We find the type of tag to dominate characteristics of the resulting transcriptomes. This is possibly due to Pol II-interacting factors, including non-coding RNAs, whose expression correlates with the tags. Proteins involved in liquid-liquid phase separation appear prominently.
Keywords: Biophysics; Molecular biology; Transcriptomics.
© 2024 The Authors.