Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system

Cell Rep. 2024 Jun 25;43(6):114243. doi: 10.1016/j.celrep.2024.114243. Epub 2024 May 27.

Abstract

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.

Keywords: CP: Cell biology; CP: Neuroscience; DNA damage; UPS; XP; early detection; endoplasmic reticulum stress response; iPSCs; neurodegeneration; oxidative stress; ubiquitin-proteasome system; xeroderma pigmentosum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • DNA Damage
  • Endoplasmic Reticulum Stress
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Models, Biological
  • Multiomics
  • Neurons / metabolism
  • Neurons / pathology
  • Oxidative Stress
  • Proteasome Endopeptidase Complex / metabolism
  • Xeroderma Pigmentosum* / genetics
  • Xeroderma Pigmentosum* / metabolism
  • Xeroderma Pigmentosum* / pathology

Substances

  • Proteasome Endopeptidase Complex