Feature engineering of environmental covariates improves plant genomic-enabled prediction

Front Plant Sci. 2024 May 15:15:1349569. doi: 10.3389/fpls.2024.1349569. eCollection 2024.

Abstract

Introduction: Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology.

Methods: When environmental covariates are incorporated as inputs in the genomic prediction models, this information only sometimes helps increase prediction performance. For this reason, this investigation explores the use of feature engineering on the environmental covariates to enhance the prediction performance of genomic prediction models.

Results and discussion: We found that across data sets, feature engineering helps reduce prediction error regarding only the inclusion of the environmental covariates without feature engineering by 761.625% across predictors. These results are very promising regarding the potential of feature engineering to enhance prediction accuracy. However, since a significant gain in prediction accuracy was observed in only some data sets, further research is required to guarantee a robust feature engineering strategy to incorporate the environmental covariates.

Keywords: environmental covariates; feature engineering; feature selection; genomic selection; plant breeding.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Open Access fees were received from the Bill & Melinda Gates Foundation. We acknowledge the financial support provided by the Bill & Melinda Gates Foundation (INV-003439 BMGF/FCDO Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG)) as well as the USAID projects (Amend. No. 9 MTO 069033, USAID-CIMMYT Wheat/AGGMW, Genes 2023, 14, 927 14 of 18AGG-Maize Supplementary Project, AGG (Stress Tolerant Maize for Africa)) which generated the CIMMYT data analyzed in this study. We are also thankful for the financial support provided by the Foundation for Research Levy on Agricultural Products (FFL) and the Agricultural Agreement Research Fund (JA) through the Research Council of Norway for grants 301835 (Sustainable Management of Rust Diseases in Wheat) and 320090 (Phenotyping for Healthier and more Productive Wheat Crops). We acknowledge the support of the Window 1 and 2 funders to the Accelerated Breeding Initiative (ABI).