Objective: Periodontitis is an inflammatory oral disease that occurs as a result of the damaging effects of the immune response against the subgingival microflora. Among the mechanisms involved, the nucleotide-binding oligomerization domain, leucine-rich repeat-containing proteins family member NLRP3 (NLR family pyrin domain-containing 3), proposed as the key regulator of macrophage-induced inflammation, is strongly associated with periodontal disease due to the bacterial activators. This paper aimed to present key general concepts of NLRP3 inflammasome activation and regulation in periodontal disease.
Method: A narrative review was conducted in order to depict the current knowledge on the relationship between NLRP3 inflammasome activity and periodontal disease. In vitro and in situ studies were retrieved and commented based on their relevance in the field.
Results: The NLRP3 inflammasome activity stimulated by periodontal microbiota drive periodontal disease pathogenesis and progression. This occurs through the release of proinflammatory cytokines IL-1β, IL-18, and DAMPs (damage-associated molecular pattern molecules) following inflammasome activation. Moreover, the tissue expression of NLRP3 is dysregulated by oral microbiota, further exacerbating periodontal inflammation.
Conclusion: The review provides new insights into the relationship between the NLRP3 inflammasome activity and periodontal disease pathogenesis, highlighting the roles and regulatory mechanism of inflammatory molecules involved in the disease process.
Keywords: bacteria; inflammasome; lipopolysaccharide; macrophage; periodontal disease.
© 2024 The Author(s). Oral Diseases published by Wiley Periodicals LLC.