Objectives: This study aimed to compare the flexural strength of monolithic zirconia with different thicknesses and two sintering techniques.
Materials and methods: This in vitro, experimental study was conducted on 28 monolithic zirconia discs with 10 mm diameter and 0.5 (n = 14) and 1.2 mm (n = 14) thickness. Each group was divided into two subgroups (n = 7) for fast (60 min) and conventional (120 min) sintering at 1450°C. After sintering, the specimens were thermocycled and their flexural strength was measured by piston-on-3-balls technique in a universal testing machine (0.5 mm/min, 1.2 mm pin diameter). Data were analyzed by the Weibull test, one-way analysis of variance, and Tukey's test (α = .05).
Results: The flexural strength of specimens with 1.2 mm thickness was significantly higher than that of specimens with 0.5 mm thickness (p < .05). The flexural strength of 1.2 mm/120-min group was slightly, but not significantly, higher than that of 1.2 mm/60-min group (p > .05). The flexural strength of 0.5 mm/120-min group was slightly, but not significantly, higher than that of 0.5 mm/60-min group (p > .05).
Conclusion: The increase in thickness of monolithic zirconia increases its flexural strength; however, increasing the sintering time appears to have no significant effect on the flexural strength of monolithic zirconia.
Keywords: flexural strength; sintering; zirconium oxide.
© 2024 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd.