Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor associated with cancer metabolism and is regarded as a potent anticancer therapeutic strategy within the hypoxic microenvironment of cancer. In this study, stilbenoid derivatives were designed, synthesized, and assessed for their capacity to inhibit HIF-1α-associated cancer metabolism and evaluated for inhibition of cancer cell viability and HIF activation. Through the structure-activity relationship studies, compound 28e was identified as the most potent derivative. Specifically, under the hypoxic condition, 28e reduced the accumulation of HIF-1α protein and the expression of its target genes related to glucose metabolism without affecting the expression of HIF-1α mRNA. Furthermore, 28e inhibited glucose uptake, glycolytic metabolism, and mitochondrial respiration, decreasing cellular ATP production under hypoxic conditions. In addition, 28e displayed significant anti-tumor effects and effectively suppressed the accumulation of HIF-1α protein in tumor tissue in vivo xenograft model. These findings suggest that our stilbenoid derivatives exert their anticancer effects by targeting HIF-1α-centered cancer metabolism under hypoxic conditions.
Keywords: HIF-1α; Stilbenoid analogs; anticancer activity; cancer metabolism; hypoxic cancer.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.