Objectives: Gradual expansion of multiple sclerosis lesions over time is known to have a significant impact on disease progression. However, accurately quantifying the volume changes in chronic lesions presents challenges due to their slow rate of progression and the need for longitudinal segmentation. Our study addresses this by estimating the expansion of chronic lesions using data collected over a 1-2 year period and exploring imaging markers that do not require longitudinal lesion segmentation.
Methods: Pre- and post-gadolinium 3D-T1, 3D FLAIR and diffusion tensor images were acquired from 42 patients with MS. Lesion expansion, stratified by the severity of tissue damage as measured by mean diffusivity change, was analysed between baseline and 48 months (Progressive Volume/Severity Index, PVSI). Central brain atrophy (CBA) and the degree of tissue loss inside chronic lesions (measured by the change of T1 intensity and mean diffusivity (MD)) were used as surrogate markers.
Results: CBA measured after 2 years of follow-up estimated lesion expansion at 4 years with a high degree of accuracy (r = 0.82, p < 0.001, ROC area under the curve 0.92, sensitivity of 94 %, specificity of 85 %). Increased MD within chronic lesions measured over 2 years was strongly associated with future expansion (r = 0.77, p < 0.001, ROC area under the curve 0.87, sensitivity of 81 % and specificity of 81 %). In contrast, change in lesion T1 hypointensity poorly explained future PVSI (best sensitivity and specificity 60 % and 59 % respectively).
Interpretation: CBA and, to a lesser extent, the change in MD within chronic MS lesions, measured over a period of 2 years, can provide a reliable and sensitive estimate of the extent and severity of chronic lesion expansion.
Keywords: Axonal loss; Central brain atrophy; Lesion expansion; Multiple sclerosis; Slow-burning inflammation.
Copyright © 2024. Published by Elsevier B.V.