In vitro antimicrobial resistance of Escherichia coli, Serratia marcescens, Klebsiella oxytoca, and Klebsiella pneumoniae on Bavarian dairy farms between 2014 and 2022

J Dairy Sci. 2024 Oct;107(10):8402-8412. doi: 10.3168/jds.2023-24536. Epub 2024 May 31.

Abstract

The objective of this study was to describe the prevalence of antimicrobial resistance of Escherichia coli, Klebsiella oxytoca, Klebsiellapneumoniae, and Serratiamarcescens from quarter milk samples submitted to the udder health laboratory of the Bavarian Animal Health Services (TGD) in Southern Germany between 2014 and 2022. All samples were tested with the California Mastitis Test and analyzed with a standard microbroth dilution to determine the MIC. The antimicrobials tested were amoxicillin/clavulanate, cefazoline, kanamycin/cefalexin, cefoperazone, cefquinome, and marbofloxacin. Breakpoints were chosen in accordance with the Clinical and Laboratory Standards Institute (CLSI). Over the study period, E. coli, K. oxytoca, and K. pneumoniae showed only few resistances to all antimicrobials tested. For those pathogens MIC 50 and MIC 90 were below breakpoint for all antimicrobials except cefoperazone over the 9 years. A decrease in MIC could be seen for E. coli and K. oxytoca for all of the antimicrobials. While the MIC for K. pneumoniae stayed more stagnant, the prevalence of resistance still decreased overall. Serratiamarcescens isolates were proven intrinsically resistant to amoxicillin/clavulanate and cefazolin, and while in vitro resistances were low for all other antimicrobials tested, S. marcescens tended toward higher MIC for most of the antimicrobials over the years. Over time, there was also an overall increase in the number of isolates for all 4 pathogens per year. Starting 2018 there was a steep increase in the number of isolates particularly from clinical cases. This jump in numbers coincided with a change of the regulation for veterinary drug prescriptions in Germany in 2018 that required, among other things, antimicrobial resistance testing before a change of antibiotics in the course of treatment and the use of critically important antimicrobials. Overall, although the pathogens increased in numbers, the prevalence of their antimicrobial resistance remained low.

Keywords: antimicrobial resistance; gram-negative pathogens; mastitis.

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / pharmacology
  • Cattle
  • Drug Resistance, Bacterial
  • Escherichia coli* / drug effects
  • Farms
  • Female
  • Germany
  • Klebsiella oxytoca* / drug effects
  • Klebsiella pneumoniae / drug effects
  • Microbial Sensitivity Tests*
  • Milk / microbiology
  • Serratia marcescens / drug effects

Substances

  • Anti-Bacterial Agents