Computational identification of potential acetylcholinesterase (AChE) and monoamine oxidase-B inhibitors from Vitis vinifera: a case study of Alzheimer's disease (AD)

In Silico Pharmacol. 2024 May 31;12(1):49. doi: 10.1007/s40203-024-00214-3. eCollection 2024.

Abstract

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that affects people aged 60 years and above. Yet, the discovery of potent therapeutic agents against this disease has no utmost progress and a number of drug candidates could not make it out of the clinical trials at varied stages. At the same time, the currently available anti-cholinesterase (AChE) and monoamine oxidase-B (MAO-B) for the treatment of AD can only improve the clinical symptoms while the recently approved immunotherapy agent "remains questionable. Thus, the need for novel therapeutic agents with the potential to treat the aetiology of the disease. Herein, this study sought to examine the potential of a number of bioactive compounds derived from Vitis vinifera as a promising agent against AChE and MAO-B. Using a computational approach via molecular docking 23 bioactive agents were screened against AChE and MAO-B, and the compounds with a binding score below that of the standard ligand were further subjected to drug-likeness and pharmacokinetic screening. Eight and thirteen of the studied agents optimally saturated the active pocket of the AChE and MAO-B respectively, forming principal interactions with a number of amino acids at the active pocket of the targets and among these compounds only rutin failed the drug-likeness test by violating four parameters while all showed moderate pharmacokinetics features. A number of Vitis vinifera-derived bioactive compounds show excellent inhibitory potential against AChE and MAO-B, and moderate pharmacokinetic features when compared to the reference ligand (tacrine). These compounds are therefore proposed as novel AChE and MAO-B inhibitors for the treatment of AD and wet-lab analysis is necessary to affirm their potency.

Keywords: AChE inhibitors; Acetylcholinesterase (AChE); Alzheimer’s disease (AD); Bioactive compounds; Vitis vinifera.