Constructing a built-in interfacial electric field (BIEF) is an effective approach to enhance the electrocatalysts performance, but it has been rarely demonstrated for electrochemical carbon dioxide reduction reaction (CO2RR) to date. Herein, for the first time, SnO2/LaOCl nanofibers (NFs) with BIEF is created by electrospinning, exhibiting a high Faradaic efficiency (FE) of 100% C1 product (CO and HCOOH) at -0.9--1.1 V versus reversible hydrogen electrode (RHE) and a maximum FEHCOOH of 90.1% at -1.2 VRHE in H-cell, superior to the commercial SnO2 nanoparticles (NPs) and LaOCl NFs. SnO2/LaOCl NFs also exhibit outstanding stability, maintaining negligible activity degradation even after 10 h of electrolysis. Moreover, their current density and FEHCOOH are almost 400 mA cm-2 at -2.31 V and 83.4% in flow-cell. The satisfactory CO2RR performance of SnO2/LaOCl NFs with BIEF can be ascribed to tight interface of coupling SnO2 NPs and LaOCl NFs, which can induce charge redistribution, rich active sites, enhanced CO2 adsorption, as well as optimized Gibbs free energy of *OCHO. The work reveals that the BIEF will trigger interfacial accumulation and stability enhancement effects in promoting CO2RR activity and stability of SnO2-based materials, providing a novel approach to develop stable and efficient CO2RR electrocatalysts.
Keywords: HCOOH; SnO2; built‐in electric field; carbon dioxide reduction reaction; stability.
© 2024 Wiley‐VCH GmbH.