Background: Months after infection with severe acute respiratory syndrome coronavirus 2, at least 10% of patients still experience complaints. Long-COVID (coronavirus disease 2019) is a heterogeneous disease, and clustering efforts revealed multiple phenotypes on a clinical level. However, the molecular pathways underlying long-COVID phenotypes are still poorly understood.
Objectives: We sought to cluster patients according to their blood transcriptomes and uncover the pathways underlying their disease.
Methods: Blood was collected from 77 patients with long-COVID from the Precision Medicine for more Oxygen (P4O2) COVID-19 study. Unsupervised hierarchical clustering was performed on the whole blood transcriptome. These clusters were analyzed for differences in clinical features, pulmonary function tests, and gene ontology term enrichment.
Results: Clustering revealed 2 distinct clusters on a transcriptome level. Compared with cluster 2 (n = 65), patients in cluster 1 (n = 12) showed a higher rate of preexisting cardiovascular disease (58% vs 22%), higher prevalence of gastrointestinal symptoms (58% vs 29%), shorter hospital duration during severe acute respiratory syndrome coronavirus 2 infection (median, 3 vs 8 days), lower FEV1/forced vital capacity (72% vs 81%), and lower diffusion capacity of the lung for carbon monoxide (68% vs 85% predicted). Gene ontology term enrichment analysis revealed upregulation of genes involved in the antiviral innate immune response in cluster 1, whereas genes involved with the adaptive immune response were upregulated in cluster 2.
Conclusions: This study provides a start in uncovering the pathophysiological mechanisms underlying long-COVID. Further research is required to unravel why the immune response is different in these clusters, and to identify potential therapeutic targets to create an optimized treatment or monitoring strategy for the individual long-COVID patient.
Keywords: DLCO; Long-COVID; lung function; phenotyping; transcriptome.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.