Multifunctional smart biopolymeric films were fabricated using rose petal anthocyanin (RPA) and carrageenan (CAR) doped with rose petal-derived carbon dots (RP-CDs). Response surface-optimized RPA showed the highest total anthocyanins and radical scavenging ability. Produced RP-CD exhibited UV absorption and high fluorescence with antibacterial/antioxidant abilities. Enrichment with 2 % RP-CD and 5 % RPA in the CAR matrix results in improved physicochemical, i.e., water contact angle, water vapor permeability, and UV-blocking properties of the fabricated material. Results showed that nanocomposite films scavenged radicals better than the neat CAR films. Zeta potential, FTIR, SEM, and XPS suggested improved compatibility/stability and enhanced elemental configuration of RP-CDs/RPA additives in the CAR polymer matrix. Perishable food packaging (minced pork and shrimp) demonstrated that nanocomposite films work efficiently and non-destructively and are promising tools for monitoring real-time freshness through interpretable visual changes from red to yellow. The CAR/RP-CDs/RPA-based nanocomposite indicator films are expected to be applied as various smart packaging materials. These films possess the ability to promptly detect changes in quality, preserve the quality, and prolong the shelf life of packaged foods.
Keywords: Carbon dots; Freshness indicator; Natural colorant, anthocyanins; Smart packaging.
Copyright © 2024 Elsevier B.V. All rights reserved.