Encapsulation of Transketolase into In Vitro-Assembled Protein Nanocompartments Improves Thermal Stability

ACS Appl Bio Mater. 2024 Jun 17;7(6):3660-3674. doi: 10.1021/acsabm.3c01153. Epub 2024 Jun 4.

Abstract

Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous in vitro reassembly studies, we first investigated the effectiveness of in vitro reassembly and cargo-loading of two size classes of encapsulins Thermotoga maritima T = 1 and Myxococcus xanthus T = 3, using superfolder Green Fluorescent Protein. We show that the empty T. maritima capsid reassembles with higher yield than the M. xanthus capsid and that in vitro loading promotes the formation of the M. xanthus T = 3 capsid form over the T = 1 form, while overloading with cargo results in malformed T. maritima T = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the T. maritima encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that in vitro loading of transketolase into the T. maritima T = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of in vitro assembled encapsulins with applications in cargo stabilization.

Keywords: cargo loading; encapsulin; in vitro assembly; nanocompartment; protein; stability; transketolase.

MeSH terms

  • Biocompatible Materials / chemistry
  • Enzyme Stability*
  • Materials Testing
  • Particle Size
  • Thermotoga maritima / enzymology
  • Transketolase* / chemistry
  • Transketolase* / metabolism

Substances

  • Biocompatible Materials
  • Transketolase