Hypertrophic cardiomyopathy (HCM) is a clinically heterogeneous cardiac disease that is mainly characterized by left ventricular hypertrophy in the absence of any additional cardiac or systemic disease. HCM is genetically heterogeneous, inherited mainly in an autosomal dominant pattern, and so far pathogenic variants have been identified in more than 20 genes, mostly encoding proteins of the cardiac sarcomere. Based on its variable penetrance and expressivity, pathogenicity of newly identified variants often remains unsolved, underlining the importance of cellular and tissue-based models that help to uncover causative genetic alterations and, additionally, provide appropriate systems for the analysis of disease hallmarks as well as for the design and application of new therapeutic strategies like drug screenings and genome/base editing approaches. Here, we review the current state of cellular and tissue-engineered models and provide future perspectives for personalized therapeutic strategies of HCM.
Keywords: CRISPR/Cas9; engineered heart tissue; genome editing; hypertrophic cardiomyopathy; induced pluripotent stem cells.
© 2021 Yigit and Wollnik, published by De Gruyter.