Introduction: Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are promising candidates for stem cell therapy. Various methods such as enzymatic treatment, cell scraping, and temperature reduction using temperature-responsive cell culture dishes have been employed to culture and harvest UC-MSCs. However, the effects of different harvesting methods on cell properties and functions in vitro remain unclear. In this study, we investigated the properties and functions of UC-MSC using various cell-harvesting methods.
Methods: UC-MSC suspensions were prepared using treatments with various enzymes, cell scraping, and temperature reduction in temperature-responsive cell culture dishes. UC-MSC sheets were prepared in a temperature-responsive cell culture dish. The properties and functions of the UC-MSC suspensions and sheets were assessed according to Annexin V staining, lactate dehydrogenase (LDH) assay, re-adhesion behavior, and cytokine secretion analysis via enzyme-linked immunosorbent assay.
Results: Annexin V staining revealed that accutase induced elevated UC-MSC apoptosis. Physical scraping using a cell scraper induced a relatively high LDH release due to damaged cell membranes. Dispase exhibited relatively low adhesion from initial incubation until 3 h. UC-MSC sheets exhibited rapid re-adhesion at 15 min and cell migration at 6 h. UC-MSC sheets expressed higher levels of cytokines such as HGF, TGF-β1, IL-10, and IL-6 than did UC-MSCs in suspension.
Conclusions: The choice of enzyme and physical scraping methods for harvesting UC-MSCs significantly influenced their activity and function. Thus, selecting appropriate cell-harvesting methods is important for successful stem cell therapy.
Keywords: Cell sheet; Cytokine expression; Enzymatic digestion; Mesenchymal stem cell; Temperature responsive cell culture dish; Umbilical cord.
© 2024 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.