The Facile and Controllable Synthesis of Ultrafine Sn Nanocrystals Loaded on Carbon Black for High-Performance Lithium Storage

ChemSusChem. 2024 Nov 25;17(22):e202301807. doi: 10.1002/cssc.202301807. Epub 2024 Jul 31.

Abstract

Sn and C nanocomposites are ideal anode materials for high-energy and high-power density lithium ion batteries. However, their facile and controllable synthesis for practical applications is still a critical challenge. In this work, a facile one-step method is developed to controllably synthesize ultrafine Sn nanocrystals (< 5 nm) loaded on carbon black (Sn@C) through Na reducing SnCl4 by mechanical milling. Different from traditional up-down mechanical milling method, this method utilizes mechanical milling to trigger bottom-up reduction reaction of SnCl4. The in-situ formed Sn nanocrystals directly grow on carbon black, which results in the homogeneous composite and the size control of Sn nanocrystals. The obtained Sn@C electrode is revealed to possesses large lithium diffusion coefficient, low lithiation energy barrier and stable electrochemical property during cycle, thus showing excellent lithium storage performance with a high reversible capacity (942 mAh g-1 at a current density of 100 mA g-1), distinguished rate ability (480 mAh g-1 at 8000 mA g-1) and superb cycling performance (730 mAh g-1 at 1000 mA g-1 even after 1000 cycles).

Keywords: Sn nanocrystal; anode; carbon composite; facile synthesis; lithium storage.