Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Keywords: defect; molecular sieve; porous graphene; sensor; supercapacitor.
© 2024 Wiley‐VCH GmbH.