Human iPSC-derived CD4+ Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model

Cell Stem Cell. 2024 Jun 6;31(6):795-802.e6. doi: 10.1016/j.stem.2024.05.004.

Abstract

CD4+ T cells induced from human iPSCs (iCD4+ T cells) offer a therapeutic opportunity for overcoming immune pathologies arising from hematopoietic stem cell transplantation. However, most iCD4+ T cells are conventional helper T cells, which secrete inflammatory cytokines. We induced high-level expression of FOXP3, a master transcription factor of regulatory T cells, in iCD4+ T cells. Human iPSC-derived, FOXP3-induced CD4+ T (iCD4+ Treg-like) cells did not secrete inflammatory cytokines upon activation. Moreover, they showed demethylation of the Treg-specific demethylation region, suggesting successful conversion to immunosuppressive iCD4+ Treg-like cells. We further assessed these iCD4+ Treg-like cells for CAR-mediated immunosuppressive ability. HLA-A2 CAR-transduced iCD4+ Treg-like cells inhibited CD8+ cytotoxic T cell (CTL) division in a mixed lymphocyte reaction assay with A2+ allogeneic CTLs and suppressed xenogeneic graft-versus-host disease (GVHD) in NSG mice treated with A2+ human PBMCs. In most cases, these cells suppressed the xenogeneic GvHD progression as much as natural CD25+CD127- Tregs did.

Keywords: graft-versus-host disease; induced pluripotent stem cells; regulatory T cells.

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / metabolism
  • Disease Models, Animal
  • Forkhead Transcription Factors / metabolism
  • Graft vs Host Disease* / immunology
  • Heterografts
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Mice
  • Mice, Inbred NOD
  • Receptors, Chimeric Antigen* / immunology
  • Receptors, Chimeric Antigen* / metabolism
  • T-Lymphocytes, Regulatory* / immunology

Substances

  • Receptors, Chimeric Antigen
  • Forkhead Transcription Factors