The development of brain oscillatory responses and their possible role in the working memory (WM) performance of children, adolescents and young adults was investigated. A set of 0- and 1-back tasks with letter stimuli were administered to a final sample of 131 subjects (between 6 and 20 years of age). A decrease in response times (RTs) and an increase of the sensitivity index d-prime (d') were seen with increased age. RTs increased and d' decreased with load, indicating higher difficulty for higher loads. Event-related synchronization (ERS) and event-related desynchronization (ERD) were obtained by the convolution of Morlet wavelets on the recorded EEG. Statistical analyses were performed of the absolute and relative power of brain oscillations defined by topography, frequency and latency. Posterior alpha and beta ERD, and frontocentral theta ERS, were induced by the stimuli presented during the n-back task. While relative theta ERS increased with age, absolute theta ERS, absolute and relative alpha and, absolute beta ERD, decreased with age. Age-related improvement in behavioral performance was mediated by relative theta. Alpha and beta ERD were more pronounced for the most difficult task (1-back) and for the target condition. Globally, there was high consistency of the effects of target type and task load across development. Theta ERS maturation is a crucial step for improving WM performance during development, while alpha and beta ERD maturation seem to be less critical for behavioral performance improvement with age, possibly due to a sufficient level of alpha-beta ERD for good performance in young children.
Keywords: Adolescents; Brain oscillations; Children; N-back; Working memory.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.