Multitrait genetic parameter estimates in a Tenebrio molitor reference population: high potential for breeding gains

Animal. 2024 Jun;18(6):101197. doi: 10.1016/j.animal.2024.101197. Epub 2024 May 21.

Abstract

To address multiple issues impacting the climate imbalance, insects, and in particular Tenebrio molitor, represent now a promising alternative for producing high-quality protein products with low environmental impact. As with any new species farmed on an industrial scale, insect breeding production must be improved through the accumulation of knowledge on rearing techniques and genetic management. Little information on the inheritance of agronomically interesting traits, dedicated to Tenebrio molitor, is available. This study aims to decipher the genetic parameters (heritability and genetic correlations) of reproduction, larval growth and survival, pupation rate and developmental time from a reference population made up of 1 931 sib-groups reared under pedigree, in controlled and stable environments and generated with single pair mating. Considering all sib-groups, 29 599 offspring have been generated and phenotyped over four generations to support this study and provide enough data to estimate, under linear animal models, the additive genetic and common environmental effects. Phenotypic analyses underlined an important variability among sib-groups and individuals, as for the total oviposition during 4 weeks counting (0-680 eggs, min - max, respectively) or larval body mass 63 days posteclosion (36.3-206.8 mg, min - max, respectively). Moderate to important heritability values have been obtained and ranged from 0.17 to 0.54 for reproduction phenotypes, 0.10-0.44 for growth parameters, 0.06-0.22 for developmental time and 0.10-0.17 for larval survival rates. The proportion of phenotypic variance explained by the environmental part varyies from 0.10 to 0.36 for reproductive traits, from 0.17 to 0.38 for growth parameters, from 0.06 to 0.36 for developmental time and 0.17-0.22 for survival rates. Genetic correlations underline relationships among phenotypes such as the trade-off between developmental time from egg to pupae and pupae weight (r2 = 0.48 ± 0.06). These important phenotypic variations coupled with promising heritability values pave the road for future breeding programs in Tenebrio molitor.

Keywords: Heritability; Insect farming; Multi-traits model; Pedigree; Yellow mealworm.

MeSH terms

  • Animals
  • Breeding*
  • Female
  • Larva* / genetics
  • Larva* / growth & development
  • Male
  • Oviposition / genetics
  • Phenotype*
  • Reproduction* / genetics
  • Tenebrio* / genetics