A robust event-driven approach to always-on object recognition

Neural Netw. 2024 Oct:178:106415. doi: 10.1016/j.neunet.2024.106415. Epub 2024 Jun 3.

Abstract

We propose a neuromimetic architecture capable of always-on pattern recognition, i.e. at any time during processing. To achieve this, we have extended an existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we transform the offline pattern categorization method into an online and event-driven layer. This classifier uses the spiking output of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also bring this event-driven pattern recognition algorithm fully online. The results have been validated on different datasets: Poker-DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard, Jayawant et al., 2015) and DVS Gesture (Amir et al., 2017). This demonstrates the efficiency of this bio-realistic SNN for ultra-fast object recognition through an event-by-event categorization process.

Keywords: Efficient coding; Event-based computations; Homeostasis; Online classification; Pattern recognition; Spiking Neural Networks; Vision.

MeSH terms

  • Algorithms*
  • Humans
  • Neural Networks, Computer*
  • Neurons / physiology
  • Pattern Recognition, Automated / methods
  • Pattern Recognition, Visual / physiology