A variety of organisms exhibit collective movement, including schooling fish and flocking birds, where coordinated behavior emerges from the interactions between group members. Despite the prevalence of collective movement in nature, little is known about the neural mechanisms producing each individual's behavior within the group. Here we discuss how a neurobiological approach can enrich our understanding of collective behavior by determining the mechanisms by which individuals interact. We provide examples of sensory systems for social communication during collective movement, highlight recent discoveries about neural systems for detecting the position and actions of social partners, and discuss opportunities for future research. Understanding the neurobiology of collective behavior can provide insight into how nervous systems function in a dynamic social world.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.