Cancer cachexia (CC) is a multifactorial and complex syndrome experienced by up to 80% of patients with cancer and implicated in ∼40% of cancer-related deaths. Given its significant impact on patients' quality of life and prognosis, there has been a growing emphasis on elucidating the underlying mechanisms of CC using preclinical models. However, the mechanisms of cachexia appear to differ across several variables including tumor type and model and biologic variables such as sex. These differences may be exacerbated by variance in experimental approaches and data reporting. This review examines literature spanning from 2011 to March 2024, focusing on common preclinical models of CC, including Lewis Lung Carcinoma, pancreatic KPC, and colorectal colon-26 and Apcmin/+ models. Our analysis reveals considerable heterogeneity in phenotypic outcomes, and investigated mechanisms within each model, with particular attention to sex differences that may be exacerbated through methodological differences. Although searching for unified mechanisms is critical, we posit that effective treatment approaches are likely to leverage the heterogeneity presented by the tumor and pertinent biological variables to direct specific interventions. In exploring this heterogeneity, it becomes critical to consider methodological and data reporting approaches to best inform further research.
Keywords: ApcMin/+; KPC; Lewis lung carcinoma (LLC); biological sex; colon-26 (C26).