We present a low-loss, compact, hollow core optical fibre (HCF) cell integrated with single mode fibre (SMF). The cell is designed to be filled with atomic vapour and used as a component in photonic quantum technologies, with applications in quantum memory and optical switching. We achieve a total insertion loss of 0.6(2) dB at 780 nm wavelength via graded index fibre to ensure efficient mode matching coupled with anti-reflection coatings to minimise loss at the SMF-HCF interfaces. We also present numerical modelling of these interfaces, which can be undertaken efficiently without the need for finite element simulation. We encapsulate the HCF core by coupling to the SMF inside a support capillary, enhancing durability and facilitating seamless integration into existing fibre platforms.