Study objectives were to determine the effects of mitoquinol (MitoQ, a mitochondrial-targeted antioxidant) on biomarkers of metabolism and inflammation during acute heat stress (HS). Crossbred barrows [n = 32; 59.0 ± 5.6 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCon), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were acclimated for 6 d to individual pens before study initiation. The trial consisted of two experimental periods (P). During P1 (2 d), pigs were fed ad libitum and housed in TN conditions (20.6 ± 0.8 °C). During P2 (24 h), HSCon and HSMitoQ pigs were exposed to continuous HS (35.2 ± 0.2 °C), while TNCon and TNMitoQ remained in TN conditions. MitoQ (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +6.8 °C, and +101 breaths per minute, respectively; P < 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (FI; 67%; P < 0.01); however, FI tended to be increased in HSMitoQ relative to HSCon pigs (1.5 kg vs. 0.9 kg, respectively; P = 0.08). Heat-stressed pigs lost BW compared to their TN counterparts (-4.7 kg vs. +1.6 kg, respectively; P < 0.01); however, the reduction in BW was attenuated in HSMitoQ compared to HSCon pigs (-3.9 kg vs. -5.5 kg, respectively; P < 0.01). Total gastrointestinal tract weight (empty tissue and luminal contents) was decreased in HS pigs relative to their TN counterparts (6.2 kg vs. 8.6 kg, respectively; P < 0.01). Blood glucose increased in HSMitoQ relative to HSCon pigs (15%; P = 0.04). Circulating non-esterified fatty acids (NEFA) increased in HS compared to TN pigs (P < 0.01), although this difference was disproportionately influenced by elevated NEFA in HSCon relative to HSMitoQ pigs (251 μEq/L vs. 142 μEq/L; P < 0.01). Heat-stressed pigs had decreased circulating insulin relative to their TN counterparts (47%; P = 0.04); however, the insulin:FI ratio tended to increase in HS relative to TN pigs (P = 0.09). Overall, circulating leukocytes were similar across treatments (P > 0.10). Plasma C-reactive protein remained similar among treatments; however, haptoglobin increased in HS relative to TN pigs (48%; P = 0.03). In conclusion, acute HS exposure negatively altered animal performance, inflammation, and metabolism, which were partially ameliorated by MitoQ.
Keywords: MitoQ; antioxidant; heat stroke; hyperthermia; inflammation.
Heat stress (HS) compromises animal health and productivity, and this causes major economic losses in almost every livestock sector. The negative consequences of HS are thought to originate from intestinal barrier dysfunction and subsequent immune activation. The underlying causes of lost intestinal integrity during HS are likely multifactorial; however, intestinal ischemia, increased accumulation of reactive oxygen species, and the ensuing epithelial oxidative damage might be potential causes. Mitochondria-targeted antioxidants, such as mitoquinol (MitoQ), are probably more effective than traditional dietary antioxidants (i.e., selenium, vitamin E) at alleviating oxidative stress, as they localize and accumulate within the mitochondria, potentiating their antioxidant activity. Thus, the present study aimed to investigate MitoQ’s role during a thermal event in growing pigs. Herein, HS increased all body temperature indices, decreased feed intake (FI), and induced substantial body weight (BW) loss. Interestingly, the reduction in FI and BW was less dramatic in pigs receiving MitoQ. Changes in circulating metabolism and the acute phase response were observed due to the HS challenge; however, contrary to our expectations, these changes were not offset by MitoQ administration. Although our results suggest a positive MitoQ effect on growth performance, future studies are needed to corroborate the replicability of this response during HS.
© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science.