Instructions allow us to fulfill novel and complex tasks on the first try. This skill has been linked to preparatory brain signals that encode upcoming demands in advance, facilitating novel performance. To deepen insight into these processes, we explored whether instructions pre-activated task-relevant motoric and perceptual neural states. Critically, we addressed whether these representations anticipated activity patterns guiding overt sensorimotor processing, which could reflect that internally simulating novel tasks facilitates the preparation. To do so, we collected functional magnetic resonance imaging data while female and male participants encoded and implemented novel stimulus-response associations. Participants also completed localizer tasks designed to isolate the neural representations of the mappings-relevant motor responses, perceptual consequences, and stimulus categories. Using canonical template tracking, we identified whether and where these sensorimotor representations were pre-activated. We found that response-related templates were encoded in advance in regions linked with action control, entailing not only the instructed responses but also their somatosensory consequences. This result was particularly robust in primary motor and somatosensory cortices. While, following our predictions, we found a systematic decrease in the irrelevant stimulus templates' representational strength compared to the relevant ones, this difference was due to below-zero estimates linked to the irrelevant category activity patterns. Overall, our findings reflect that instruction processing relies on the sensorimotor cortices to anticipate motoric and kinesthetic representations of prospective action plans, suggesting the engagement of motor imagery during novel task preparation. More generally, they stress that the somatomotor system could participate with higher-level frontoparietal regions during anticipatory task control.
Keywords: Cognitive control; Multivariate analyses; Novel instructed behavior; Task preparation; fMRI.
Copyright © 2024 Elsevier Ltd. All rights reserved.