Purpose: To assess diffusion tensor imaging (DTI) in differentiating benign from malignant thyroid nodules. Methods: A retrospective analysis was done on 55 patients with thyroid nodules who had undergone DTI. The fraction anisotropy (FA) and mean diffusivity (MD) of the thyroid nodules were measured using region of interest (ROI) by two observers. The final diagnosis was malignant and benign, as proved by pathological examination. Results: The mean MD of benign thyroid nodules (1.84 ± 0.42 and 1.90 ± 0.37 × 10-3mm2/s) was significantly higher (p < .001) than malignant nodules (0.95 ± 0.46 and 0.97 ± 0.41 × 10-3mm2/s) as scored by both observers. The cut-off values of 1.45 and 1.50 × 10-3mm2/s were used to differentiate malignant from benign thyroid nodules with the areas under the curve (AUC) of 0.926 and 0.937, respectively. The mean FA of benign thyroid nodules (0.23 ± 0.07 and 0.24 ± 0.08) was significantly lower (p < .001) than malignant nodules (0.48 ± 0.21 and 0.49 ± 0.18). The FA cut-off value of ≤0.32 and 0.33 was used for differentiating malignant from benign thyroid nodules with an AUC of 0.877 and 0.881, respectively. A combination of MD and FA values was used to differentiate benign from malignant thyroid nodules with an AUC of 0.932 and an accuracy of 87%. There was an excellent agreement between both observers for FA and MD (K = 0.939, 0.929). Conclusion: The DTI is a non-invasive, non-contrast imaging tool that can differentiate benign from malignant thyroid nodules.
Keywords: Diffusion tensor imaging; cancer; magnetic resonance imaging; thyroid.