Shadowed versus Etched Superconductor-Semiconductor Junctions in Al/InAs Nanowires

Nano Lett. 2024 Jul 10;24(27):8394-8401. doi: 10.1021/acs.nanolett.4c02055. Epub 2024 Jun 12.

Abstract

Hybrid semiconductor-superconductor nanowires have emerged as a cornerstone in modern quantum devices. Integrating such nanowires into hybrid devices typically requires extensive postgrowth processing which may affect device performance unfavorably. Here, we present a technique for in situ shadowing superconductors on nanowires and compare the structural and electronic properties of Al junctions formed by shadowing versus etching. Based on transmission electron microscopy, we find that typical etching procedures lead to atomic-scale surface roughening. This surface perturbation may cause a reduction of the electron mobility as demonstrated in transport measurements. Further, we display advanced shadowing geometries aiding in the pursuit of bringing fabrication of hybrid devices in situ. Finally, we give examples of shadowed junctions exploited in various device geometries that exhibit high-quality quantum transport signatures.

Keywords: InAs/Al; hybrid quantum devices; nanowires; semiconductor; shadow; superconductor.