The inevitable shuttling and slow redox kinetics of lithium polysulfides (LiPSs) as well as the uncontrolled growth of Li dendrites have strongly limited the practical applications of lithium-sulfur batteries (LSBs). To address these issues, we have innovatively constructed the carbon nanotubes (CNTs) encapsulated Co nanoparticles in situ grown on TiN-MXene nanosheets, denoted as TiN-MXene-Co@CNTs, which could serve simultaneously as both sulfur/Li host to kill "three birds with one stone" to (1) efficiently capture soluble LiPSs and expedite their redox conversion, (2) accelerate nucleation/decomposition of solid Li2S, and (3) induce homogeneous Li deposition. Benefiting from the synergistic effects, the TiN-MXene-Co@CNTs/S cathode with a sulfur loading of 2.5 mg cm-2 could show a high reversible specific capacity of 1129.1 mAh g-1 after 100 cycles at 0.1 C, and ultralong cycle life over 1000 cycles at 1.0 C. More importantly, it even achieves a high areal capacity of 6.3 mAh cm-2 after 50 cycles under a sulfur loading as high as 8.9 mg cm-2 and a low E/S ratio of 5.0 μL mg-1. Besides, TiN-MXene-Co@CNTs as Li host could deliver a stable Li plating/striping behavior over 1000 h.
Keywords: Li2S deposition; conductive network; dendrite growth; lithium polysulfides; lithium-sulfur battery.
© 2024 Wiley-VCH GmbH.