Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets

npj Quantum Inf. 2020;5(1):10.1038/s41535-020-00294-2. doi: 10.1038/s41535-020-00294-2.

Abstract

Rational design of technologically important exotic perovskites is hampered by the insufficient geometrical descriptors and costly and extremely high-pressure synthesis, while the big-data driven compositional identification and precise prediction entangles full understanding of the possible polymorphs and complicated multidimensional calculations of the chemical and thermodynamic parameter space. Here we present a rapid systematic data-mining-driven approach to design exotic perovskites in a high-throughput and discovery speed of the A 2 BB'O6 family as exemplified in A 3TeO6. The magnetoelectric polar magnet Co3TeO6, which is theoretically recognized and experimentally realized at 5 GPa from the six possible polymorphs, undergoes two magnetic transitions at 24 and 58 K and exhibits helical spin structure accompanied by magnetoelastic and magnetoelectric coupling. We expect the applied approach will accelerate the systematic and rapid discovery of new exotic perovskites in a high-throughput manner and can be extended to arbitrary applications in other families.