A similarity-driven multi-dimensional binning algorithm (SIMBA) reconstruction of free-running cardiac magnetic resonance imaging data was previously proposed. While very efficient and fast, the original SIMBA focused only on the reconstruction of a single motion-consistent cluster, discarding the remaining data acquired. However, the redundant data clustered by similarity may be exploited to further improve image quality. In this work, we propose a novel compressed sensing (CS) reconstruction that performs an effective regularization over the clustering dimension, thanks to the integration of inter-cluster motion compensation (XD-MC-SIMBA). This reconstruction was applied to free-running ferumoxytol-enhanced datasets from 24 patients with congenital heart disease, and compared to the original SIMBA, the same XD-MC-SIMBA reconstruction but without motion compensation (XD-SIMBA), and a 5D motion-resolved CS reconstruction using the free-running framework (FRF). The resulting images were compared in terms of lung-liver and blood-myocardium sharpness, blood-myocardium contrast ratio, and visible length and sharpness of the coronary arteries. Moreover, an automated image quality score (IQS) was assigned using a pretrained deep neural network. The lung-liver sharpness and blood-myocardium sharpness were significantly higher in XD-MC-SIMBA and FRF. Consistent with these findings, the IQS analysis revealed that image quality for XD-MC-SIMBA was improved in 18 of 24 cases, compared to SIMBA. We successfully tested the hypothesis that multiple motion-consistent SIMBA clusters can be exploited to improve the quality of ferumoxytol-enhanced cardiac MRI when inter-cluster motion-compensation is integrated as part of a CS reconstruction.
Copyright: © 2024 Romanin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.