Harnessing the potential of shared data in a secure, inclusive, and resilient manner via multi-key homomorphic encryption

Sci Rep. 2024 Jun 13;14(1):13626. doi: 10.1038/s41598-024-63393-1.

Abstract

In this manuscript, we develop a multi-party framework tailored for multiple data contributors seeking machine learning insights from combined data sources. Grounded in statistical learning principles, we introduce the Multi-Key Homomorphic Encryption Logistic Regression (MK-HELR) algorithm, designed to execute logistic regression on encrypted multi-party data. Given that models built on aggregated datasets often demonstrate superior generalization capabilities, our approach offers data contributors the collective strength of shared data while ensuring their original data remains private due to encryption. Apart from facilitating logistic regression on combined encrypted data from diverse sources, this algorithm creates a collaborative learning environment with dynamic membership. Notably, it can seamlessly incorporate new participants during the learning process, addressing the key limitation of prior methods that demanded a predetermined number of contributors to be set before the learning process begins. This flexibility is crucial in real-world scenarios, accommodating varying data contribution timelines and unanticipated fluctuations in participant numbers, due to additions and departures. Using the AI4I public predictive maintenance dataset, we demonstrate the MK-HELR algorithm, setting the stage for further research in secure, dynamic, and collaborative multi-party learning scenarios.

Keywords: Adaptive machine learning systems; Data privacy; Dynamic membership; Multi-key homomorphic encryption; Multi-party collaborative learning; Statistical learning.