The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (R2 ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.
Keywords: Densitometry; Ethanol content; FTIR; Hand sanitizer formulations; Hydrogel; Raman.
© 2024. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.