Objectives: During the manufacturing of Porcelain Veneered Zirconia (PVZ) dental crowns, the veneer-core system undergoes high-temperature firing cycles and gets fused together which is then, under a controlled setting, cooled down to room temperature. During this cooling process, the mismatch in thermal properties between zirconia and porcelain leads to the development of transient and residual thermal stresses within the crown. These thermal stresses are inherent to the PVZ dental crown systems and render the crown structure weak, acting as a precursor to veneer chipping, fracture, and delamination. In this study, the introduction of an intermediate functionally graded material (FGM) layer at the bi-material interface is investigated as a potentially viable alternative for providing a smoother transition of properties between zirconia and porcelain in a PVZ crown system.
Methods: Anatomically correct 3D crown models were developed for this study, with and without the FGM layer modeled at the bi-material interface. A viscoelastic finite element model was developed and validated for an anatomically correct bilayer PVZ crown system which was then used for predicting residual and transient stresses in the bilayer PVZ crown. Subsequently, the viscoelastic finite element model was further extended for the analysis of graded sublayers within the FGM layer, and this extended model was used for predicting the residual and transient stresses in the functionally graded PVZ crown, with an FGM layer at the bi-material interface.
Results: The study showed that the introduction of an FGM layer at the bi-material interface has the potential to reduce the effects from transient and residual stresses within the PVZ crown system relative to a bilayer PVZ crown structure. Furthermore, the study revealed that the FGM layer causes stress redistribution to alleviate the stress concentration at the interfacial surface between porcelain and zirconia which can potentially enhance the durability of the PVZ crowns towards interfacial debonding or fracture.
Significance: Thus, the use of an FGM layer at the bi-material interface shows a good prospect for enhancing the longevity of the PVZ dental crown restorations by alleviating the abrupt thermal property difference and relaxing thermal stresses.
Keywords: Functionally graded material; Porcelain Veneered Zirconia crown; Residual stresses; Transient stresses; Viscoelastic finite element analysis.
Copyright © 2024 Elsevier Inc. All rights reserved.