LW-1 induced resistance to TMV in tobacco was mediated by nitric oxide and salicylic acid pathway

Pestic Biochem Physiol. 2024 Jun:202:105896. doi: 10.1016/j.pestbp.2024.105896. Epub 2024 Apr 4.

Abstract

The objective of this study was to investigate the mechanism underlying LW-1-induced resistance to TMV in wild-type and salicylic acid (SA)-deficient NahG transgenic tobacco plants. Our findings revealed that LW-1 failed to induce antivirus infection activity and increase SA content in NahG tobacco, indicating the crucial role of SA in these processes. Meanwhile, LW-1 triggered defense-related early-signaling nitric oxide (NO) generation, as evidenced by the emergence of NO fluorescence in both types of tobacco upon treatment with LW-1, however, NO fluorescence was stronger in NahG compared to wild-type tobacco. Notably, both of them were eliminated by the NO scavenger cPTIO, which also reversed LW-1-induced antivirus activity and the increase of SA content, suggesting that NO participates in LW-1-induced resistance to TMV, and may act upstream of the SA pathway. Defense-related enzymes and genes were detected in tobacco with or without TMV inoculation, and the results showed that LW-1 regulated both enzyme activity (β-1,3-glucanase [GLU], catalase [CAT] and phenylalanine ammonia-lyase [PAL]) and gene expression (PR1, PAL, WYKY4) through NO signaling in both SA-dependent and SA-independent pathways.

Keywords: Induced resistance (IR); LW-1; Nitric oxide (NO); Salicylic acid (SA).

MeSH terms

  • Disease Resistance*
  • Gene Expression Regulation, Plant / drug effects
  • Nicotiana* / genetics
  • Nicotiana* / metabolism
  • Nitric Oxide* / metabolism
  • Plant Diseases*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified
  • Salicylic Acid* / metabolism
  • Salicylic Acid* / pharmacology
  • Signal Transduction
  • Tobacco Mosaic Virus*

Substances

  • Salicylic Acid
  • Nitric Oxide
  • Plant Proteins