Discovery of Self-Assembled 2D Ru/Si Superlattices Boosting Hydrogen Evolution

Small. 2024 Oct;20(42):e2402357. doi: 10.1002/smll.202402357. Epub 2024 Jun 17.

Abstract

2D heterostructuring is a versatile methodology for designing nanoarchitecture catalytic systems that allow for reconstruction and modulation of interfaces and electronic structures. However, catalysts with such structures are extremely scarce due to limited synthetic strategies. Here, a highly ordered 2D Ru/Si/Ru/Si… nano-heterostructures (RSHS) is reported by acid etching of the LaRuSi electride. RSHS shows a superior electrocatalytic activity for hydrogen evolution with an overpotential of 14 mV at 10 mA cm-2 in alkaline media. Both experimental analyses and first-principles calculations demonstrate that the electronic states of Ru can be tuned by strong interactions of the interfacial Ru-Si, leading to an optimized hydrogen adsorption energy. Moreover, due to the synergistic effect of Ru and Si, the energy barrier of water dissociation is significantly reduced. The well-organized superlattice structure will provide a paradigm for construction of efficient catalysts with tunable electronic states and dual active sites.

Keywords: 2D materials; high‐ordered superlattices; hydrogen evolution; self‐assembly; well‐organized interfaces.