In silico and in vitro studies for the identification of small molecular inhibitors from Euphorbia hirta Linn for rheumatoid arthritis: targeting TNF-α-mediated inflammation

Mol Divers. 2024 Jun 17. doi: 10.1007/s11030-024-10900-1. Online ahead of print.

Abstract

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that is now potentially lethal and has a significant detrimental influence on people's daily lives by affecting bone joints. Inflammation plays a vital role in this type of autoimmune disorder. In rheumatoid arthritis, long-term production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) stimulates the immune system against cells in bone joints and helps to develop the pathogenesis of rheumatoid arthritis. So, while treating rheumatoid arthritis, we need to block these kinds of mechanisms. We employed soxhlet extraction, thin-layer chromatography (TLC), and gas chromatography-mass spectroscopy (GC-MS) to analyze the phytocompound information in E. hirta leaves. Furthermore, our research included in vitro investigations using Western blotting and mRNA expression analysis (TNF-α, IL-1β, IL-6) to affirm the anti-inflammatory effectiveness of our extract. For identifying the lead-like molecules, virtual screening and molecular dynamics simulations were used. TLC results confirmed the presence of phytocompounds in E. hirta crude through spots. The structure elucidation of the phytocompounds was confirmed by the GC-MS chromatogram. The in vitro outcomes collectively underscore the inhibitory influence of E. hirta on cell proliferation and its capacity to attenuate the expression of TNF- α within THP-1 cells. The results of in silico methodologies confirmed six lead-like molecules. We could conclude that phytocompounds from ethanol leaf crude have effective lead-like molecules against the TNF-α.

Keywords: Euphorbia hirta; Inflammation; Molecular dynamics simulations; Rheumatoid arthritis; Tumor necrosis factor-α; Virtual screening through molecular docking.